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a b s t r a c t

A robust estimation procedure for mixture linear regressionmodels is proposed by assum-
ing that the error terms follow a Laplace distribution. Using the fact that the Laplace distri-
bution can bewritten as a scalemixture of a normal and a latent distribution, this procedure
is implemented by an EM algorithm which incorporates two types of missing information
from the mixture class membership and the latent variable. Finite sample performance of
the proposed algorithm is evaluated by simulations. The proposed method is compared
with other procedures, and a sensitivity study is also conducted based on a real data set.

Published by Elsevier B.V.

1. Introduction

Least absolute deviation (LAD) regression has been widely used in practice if robust estimation is desired. The research
on its computation and theoretical properties is abundant in the literature. A detailed survey on this topic can be found
in Dielman (1984, 2005). It is known that the outliers impact more heavily on mixture linear regression models than on
the usual linear regression models, since the outliers not only affect the estimation of the regression parameters, but also
possibly totally blur the mixture structure. In this paper, LAD will be applied to a class of mixture linear regression models.
Simulation studies show that the proposed estimators of the regression coefficients are robust.

To be specific, let X be a p-dimensional vector of explanatory variables and Y be a scalar response variable. The relation-
ship between Y and X is often investigated through a linear regression model. In the mixture linear regression setup, we
assume that with probability πi, i = 1, 2, . . . , g, (X ′, Y ) comes from one of the following g ≥ 2 linear regression models

Y = X ′βi + σiεi, i = 1, 2, . . . , g, (1)

where
g

i=1 πi = 1, theβi’s are unknown p-dimensional vectors of regression coefficients, and theσi’s are unknownpositive
scalars. The random errors εi’s are assumed to be independent of the Xi’s. It is commonly assumed that the density functions
of εi’s are members in a location-scale family with means 0 and variances 1. In the following discussion, the design variable
X is assumed to be random, but the proposed estimation procedure also works for the fixed design.

If g = 1, the LAD estimator of β is the minimizer of the target function Q (β) =
n

j=1 |Yj − X ′

jβ|, where (X ′

j , Yj)
n
j=1

is a sample from model (1). Many algorithms have been developed in the literature to tackle the minimization problem
β̂ = argminβQ (β), such as linear programming, least angle regression, modified maximum likelihood method by Li and
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Arce (2004), among others. An often adopted but ad-hoc scheme for finding theMLE ofβ is to obtain the root of the derivative
of Q (β). Here σ 2 is treated as a nuisance parameter. By doing this, we obtain

∂Q (β)

∂β
= −

n
j=1

Xj sgn(Yj − X ′

jβ) = 0, (2)

where sgn(·) is the sign function which takes −1, 0, 1 if the argument is negative, 0, and positive, respectively. Let wj =

1/|Yj − X ′

jβ|, and rewrite the Eq. (2) as
n

j=1 wjXj(Yj − X ′

jβ) = 0. Thus by supplying an initial value β0 for β , the updated
value β can be found by the weighted least square solution

β1 =


n

j=1

wjXjX ′

j

−1 n
j=1

wjXjYj, (3)

where wj = 1/|Yj − X ′

jβ0|. By iterating the procedure, one can eventually find an approximate solution to argminβQ (β).
A very interesting connection between the iterated weighted least square procedure stated above and an EM algorithm

in conjunction with the Laplace distribution is found in Phillips (2002). For the sake of completeness, we briefly describe the
procedure proposed in Phillips (2002).

Andrews and Mallows (1974) showed that a Laplace distribution can be expressed as a mixture of a normal distribution
and another distribution related to the exponential distribution. To be specific, suppose Z and V are two random variables,
V has a distribution with density function v−3 exp(−(2v2)−1), v > 0, and given V = v, the conditional distribution of Z
is normal with mean 0 and variance σ 2/(2v2). Then Z marginally has a Laplace distribution with density function hε(z) =

exp(−
√
2|z|/σ)/(

√
2σ). Based on this, Phillips (2002) developed an EM algorithm to search for the minimizer of Q (β).

If V could be observed, then the complete log-likelihood function of θ = (β, σ 2), based on the sample P = (Xj, Yj, Vj)
n
j=1,

is

L(θ; P) = −
n
2
log(πσ 2) −

1
σ 2

n
j=1

V 2
j (Yj − X ′

jβ)2 −

n
j=1

log V 2
j −

1
2

n
j=1

1
V 2
j
.

Following the two steps in the EM algorithm procedure, and assuming that θ (k)
= (β(k), σ 2(k)) is the value for the kth iter-

ation, then in the (k + 1)th iteration, we have to first calculate the conditional expectation of the complete log likelihood
function L(θ; P), given the observed data set (Yj, Xj)

n
j=1 and θ = θ (k), which has the following form

E[L(θ; P)|S] = −
n
2
log(πσ 2) −

n
j=1

E[V 2
j |θ (k), (Xj, Yj)

n
j=1](Yj − X ′

jβ)2

σ 2

−

n
j=1

E[log V 2
j |θ (k), (Xj, Yj)

n
j=1] −

1
2

n
j=1

E


1
V 2
j

 θ (k), (Xj, Yj)
n
j=1


.

In the second step, the conditional expectation is maximized over θ . Denote wj = E[V 2
j |θ (k), (Xj, Yj)

n
j=1], and notice that the

third and fourth terms on the right hand side do not involve the unknown regression parameters. Therefore, to maximize
the above conditional expectation is equivalent to maximize the following terms with respect to θ ,

−
n
2
log σ 2

−

n
j=1

wj(Yj − X ′

jβ)2

σ 2
.

Interestingly, Phillips (2002) showed wj = E[V 2
j |θ (k), (Xj, Yj)

n
j=1] = σ (k)/(

√
2|Yj − X ′

jβ
(k)

|). This implies that the solution
β(k+1) is the same as the one based on (3) and the iteratively reweighted least squares procedure is an application of the EM
algorithm. It is also easy to see that σ 2(k+1) can be estimated by 2

n
j=1 wj(Yj − X ′

j β(k+1))2/n.
The robustness property of the LAD procedure, and the natural connection between LAD estimation andmaximum likeli-

hood estimation for the regression coefficients given Laplace distributed random error when g = 1, motivate us to consider
the possible extension of the algorithm to the mixture model setup. When g ≥ 2, we assume that for each i, i = 1, 2, . . . ,
g, εi follows a Laplace distribution with location 0 and scale parameter 1/

√
2, which results in the variance of εi being 1.

Then it is easily seen that for a sample S = {(X ′

j , Yj), j = 1, 2, . . . , n} from the model (1), the log-likelihood function of
θ = (β1, σ

2
1 , π1, β2, σ

2
2 , π2, . . . , βg , σ

2
g , πg) can be written as

L(θ; S) =

n
j=1

log


g

i=1

πi
√
2σi

exp


−

√
2|Yj − X ′

jβi|

σi


. (4)
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Usually no explicitMLE is available. In the following, anothermissing componentwill be incorporated into the log-likelihood
function (4), so that the solution can be obtained by a standard use of the EM algorithm.

Wei (2012) proposed a robust estimation procedure for the mixture linear regression models based on the t distribution
by extending McLachlan and Peel (2000)’s work. The research conducted in this paper deals with the same questions as in
Wei (2012), but with the LAD technique, or the Laplace distribution, instead of the less commonly used t-distribution, used
for achieving robustness. The natural connection between the LAD procedure and theMLE procedure based on Laplace error
makes the proposed procedure more appealing.

The paper is organized as follows. The EM algorithm is developed in Section 2, together with some discussion on how to
control the outliers in the x-direction. Section 3 conducts some numerical simulations to evaluate the finite sample perfor-
mance of the proposed method, and compares it with some other existing methods. Finally, a sensitivity study for various
estimation procedures is conducted in Section 3 based on a real data set.

2. EM algorithm for robust mixture regression

In model (1), assume that εi’s follow a Laplace distribution with mean 0 and scale parameter 1/
√
2. For i = 1, 2, . . . , g,

j = 1, 2, . . . , n, denote Gij as latent Bernoulli variables such that

Gij =


1, if jth observation (Xj, Yj) is from ith component;
0, otherwise.

If the complete data set T = {(Xj, Yj,Gij)}i=1,2,...,g; j=1,2,...,n is observable, the complete log likelihood function of θ = (β1, σ
2
1 ,

π1, β2, σ
2
2 , π2, . . . , βg , σ

2
g , πg) can be written as

L(θ; T) =

n
j=1

g
i=1

Gij log


πi

√
2σi

exp


−

√
2|Yj − X ′

jβi|

σi


. (5)

From Andrews and Mallows (1974), we know that a Laplace distributed random variable is a scale mixture of a normal
randomvariable and another variable related to the exponential distribution. Also see Section 1 for detail. Denote Vj, coupled
with (Xj, Yj), as the latent scale variable, j = 1, 2, . . . , n. Then the complete log-likelihood function of θ , based onD = {Xj, Yj,
Vj,Gij}i=1,2,...,g; j=1,2,...,n, has the form

L(θ;D) =

n
j=1

g
i=1

Gij log


πi

Vj
√

πσi
exp


−

V 2
j (Yj − X ′

jβi)
2

σ 2
i


1
V 3
j
exp


−

1
2V 2

j



=

n
j=1

g
i=1

Gij logπi −
1
2

n
j=1

g
i=1

Gij log(πσ 2
i ) −

n
j=1

g
i=1

GijV 2
j (Yj − X ′

jβi)
2

σ 2
i

−

n
j=1

g
i=1

Gij log V 2
j −

1
2

n
j=1

g
i=1

Gij

V 2
j
. (6)

Based on the EM algorithm principle, in the E-step, we have to calculate the condition expectation E[L(θ;D)|S, θ (0)
], where

S = {(Xj, Yj)}
n
j=1, and θ (0)

= (β
(0)
1 , σ

2(0)
1 , π

(0)
1 , . . . , β

(0)
g , σ

2(0)
g , π

(0)
g ) is a proper initial value for θ . Since the last two terms in

(6) do not involve the unknown regression parameters, we can simply drop them from the analysis. Thus, to find E[L(θ;D)|S,
θ (0)

], we only have to calculate the following two terms

τij = E[Gij|S, θ (0)
], δij = E[V 2

j |S, θ (0),Gij = 1].

One can show that

τij =
π

(0)
i σ

−1(0)
i exp(−

√
2|Yj − X ′

jβ
(0)
i |/σ

(0)
i )

g
m=1

π
(0)
m σ

−1(0)
m exp(−

√
2|Yj − X ′

jβ
(0)
m |/σ

(0)
m )

, δij =
σ

(0)
i

√
2|Yj − X ′

jβ
(0)
i |

. (7)

The calculation for δij follows the same argument as in Phillips (2002). In the M-step, the following expression will be
maximized with respect to πi’s, βi’s and σ 2

i ’s,

n
j=1

g
i=1

τij logπi −
1
2

n
j=1

g
i=1

τij log σ 2
i −

n
j=1

g
i=1

τijδij(Yj − X ′

jβi)
2

σ 2
i

, (8)

and the maximizer will be used for the next iteration.



W. Song et al. / Computational Statistics and Data Analysis 71 (2014) 128–137 131

In summary, we propose the following EM algorithm to maximize (4).
EM algorithm

(1) Choose an initial value for θ = (β1, σ
2
1 , π1, . . . , βg , σ

2
g , πg).

(2) E-Step: at the (k + 1)-th iteration, calculate τ
(k+1)
ij and δ

(k+1)
ij from Eq. (7) with (0) replaced by (k).

(3) M-Step: at the (k + 1)-th iteration, use the following formulas to calculate the maximizer of (8):

π
(k+1)
i =

1
n

n
j=1

τ
(k)
ij , β

(k+1)
i =


n

j=1

τ
(k+1)
ij δ

(k+1)
ij XjX ′

j

−1  n
j=1

τ
(k+1)
ij δ

(k+1)
ij XjYj


,

and

σ
2(k+1)
i =

2
n

j=1
τ

(k+1)
ij δ

(k+1)
ij (Yj − X ′

jβ
(k+1)
i )2

n
j=1

τ
(k+1)
ij

.

(4) Repeat steps (2), (3) until convergence is obtained.

If we further assume that all σ 2
i ’s are equal, then in the above EM algorithm, a common initial value for σ 2

i should be
used, and σ 2 can be updated in the M-step by

σ 2(k+1)
=

2
n

j=1

g
i=1

τ
(k+1)
ij δ

(k+1)
ij (Yj − X ′

jβ
(k+1)
i )2

n
.

The robustness of the EM procedure above follows from the adoption of LAD regression. It is also obvious from the
formulas of theupdatedβi’s in each iteration.Note that the factor δk+1

ij is reciprocally related to the term |Yj−X ′

jβ
(k)
i |,meaning

that larger residuals give smaller values of δk+1
ij , hence downweight the corresponding observations when calculating the

estimates.
The EM algorithm proposed above for calculating the estimate of β is an iterated reweighted least square (IRLS) proce-

dure, as the one proposed in Schlossmacher (1973) for the one population case and the weights are given by τ
(k+1)
ij δ

(k+1)
ij for

the k + 1-th iteration. Extra attention should be paid when programming the proposed EM algorithm. In the case of g = 1,
Schlossmacher (1973) warned that if a perfect LAD fit occurs, i.e., Yj − X ′

j β̂i = 0 for some i, j and β̂i, then the algorithm will
eventually give Yj − X ′

jβ
k
i ≈ 0 when iteration proceeds. As a result, δk+1

ij , which is reciprocally related to |Yj − X ′

jβ
k
i |, will

be very large, and numerical instability would follow. Although Phillips (2002) noticed that this problem rarely arises in the
case of g = 1, this does occur often in our case, which is not surprising, simply becausemore than one regressionmodel pro-
vides more chance for a perfect LAD fitting. But simply adopting Schlossmacher (1973)’s weight scheme by setting δk+1

ij = 0
whenever |Yj −X ′

jβ
k
i | < e for a pre-assigned e > 0 is not quite reasonable. It makes sense to allocate large weights for small

residuals and smallweights for large residuals and a cogent argument on this issue is provided in Phillips (2002). In our simu-
lation study,we simply adopt a hard threshold rule to control the extremely small LAD residuals in each iteration step. Under
this rule, δ(k+1)

ij will be assigned a value of 106 for any perfect LAD fit. We also tried other threshold values, such as 108, 1010

in the simulation, all these choices generate almost identical results. For the sake of brevity, we only report the simulation
results by using 106 as the threshold value. A smooth alternative to the above hard threshold, as one referee recommended,
is to replace |Yj − X ′

jβ
k
i | in the denominator of δk+1

ij by |Yj − X ′

jβ
k
i | + c , where c = 10−6 or some other small constants.

It is well known that in the IRLS procedure, numerical instability could occur if theweights are very small. A commonway
to deal with this issue is to impose a hard threshold on τ k+1

ij obtained in the k + 1-th iteration. Namely, for a pre-specified
value e say, if τ k+1

ij > e, then τ k+1
ij itself will be used for the next iteration; otherwise, e will be used as the weight for the

next iteration as is used in Wei (2012). In our simulation study, e = 10−6 is adopted.
Similar to the traditional M-estimate for linear regression and Wei (2012)’s mixture regression by a t-distribution, the

above EM algorithm based on the Laplace distribution is robust against outliers along the y-direction, but not in the x-
direction. This is also confirmed by the sensitivity study conducted in Section 3. As a consequence, if there are any high
leverage points in the data sets, then the proposed EM algorithm might fail our aims, and certain modifications would
be necessary. An obvious modification is first to identify these high leverage points, then just discard them. A commonly
used method is to calculate the leverage value for each observation using the formula hjj = n−1

+ (n − 1)−1MDj, where
MDj = (Xj − X̄)′S−1(Xj − X̄), and X̄, S are the sample mean and sample covariance matrix of Xj’s, respectively. The j-th
observation will be identified as a high leverage point if hjj > 2p/n, where p is the dimension of X . To avoid the masking
effect caused by using X̄ and S in detecting the high leverage points, some robust estimation of the population mean and
covariance matrix of X can be used instead of the sample mean and sample covariance. Wei (2012) adopted the minimum
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covariance determinant (MCD) estimators for the population mean and covariance matrix, which is implemented by the
Fast MCD algorithm developed in Rousseeuw and Van Driessen (1999). Certainly, other robust estimates of the population
mean and covariancematrix could be also used for this purpose, for example, the Stahel–Donoho (SD) estimator from Stahel
(1981) and Donoho (1982). The j-th observation will be considered as a high leverage point if the resulting MDj exceeds the
threshold χ2

p,0.975, as proposed by Pison et al. (2002). In the simulation studies, we apply the proposed EM algorithm based
on the Laplace distribution after removing the observations with MDj > χ2

p,0.975 using both the MCD estimator and the SD
estimator to calculate MDj.

3. Numerical studies

To assess the finite sample performance of the proposed robust estimation procedure, we conducted an extensive
simulation study. It is well known that label switching is always an issue when evaluating different estimation methods in
mixture models, and there are no widely accepted labeling standards. In our simulation, as inWei (2012), we simply choose
the labels by minimizing the distance to the true parameter values. The effects of labeling schemes on the comparison of
different estimation procedures deserves further study.

3.1. Simulation studies

In the simulation study, we chose equal variance for all components. The reason for doing this is that, if the variances are
not same, the log-likelihood function (5) is unbounded and goes to infinity if one observation lies exactly on one component
line and the corresponding variance goes to 0, which makes the simulation very unstable.

To compare our method with some existing estimation procedures, we generated sample data (Xj1, Xj2, Yj)
n
j=1 from the

following two-component mixture regression models, following Wei (2012):

Y =


0 + X1 + X2 + ε1, if Z = 1,
0 − X1 − X2 + ε2, if Z = 2,

where Z is the component indicator. That is, the data were generated from a two-component mixture linear regression
model with β1 = (β10, β11, β12)

′
= (0, 1, 1)′, and β2 = (β20, β21, β22)

′
= (0, −1, −1)′. The predictors X1 ∼ N(0, 1)

and X2 ∼ N(0, 1) are independent. The random error ε1 and ε2 are independent and have the same distribution as ε. To
see the effects of different distributions of ε and high leverage outliers in x-direction on various estimation methods, we
considered the following six cases: (1), ε ∼ N(0, 1); (2), ε ∼ Laplace distributionwithmean 0 and variance 1; (3). ε ∼ t1, t-
distribution with 1 degree of freedom or the Cauchy distribution; (4). ε ∼ t3, t-distribution with 3 degrees of freedom. (5).
ε ∼ 0.95N(0, 1) + 0.05N(0, 25), a mixture of two normal distributions; (6), ε ∼ N(0, 1) with 5% high leverage outliers
being X1 = X2 = 20 and Y = 100.

Case 1 is often used to evaluate the efficiency of different estimationmethods compared to the traditional MLE when the
error is exactly normally distributed and there are no outliers. For Case 2, the estimationmethods proposed in this paperwill
provide the MLE of unknown parameters, which, as in the first case, would serve as a baseline to evaluate the performance
of other estimation procedures. Both Case 3 and 4 are heavy tailed distributions and are often used in the literature tomimic
the outlier situations. Case 5 would produce 5% data likely to be low leverage outliers, and in Case 6, 5% of the observations
are replicated serving as the high leverage outliers, which will be used to check the robustness of estimation procedures
against the high leverage outliers.

Nine estimation methods were compared in the simulation study: (1), the maximum likelihood method based on the
normality assumption (MLE); (2), the trimmed likelihood estimator (TLE) proposed by Neykov et al. (2007); (3), the robust
modified EM algorithm based on bisquare (Bisquare) proposed by Bai et al. (2012); (4), robust mixture regression based on
the t-distribution (Mixregt) proposed byWei (2012); (5), the trimmedmixture regression based on t-distribution (Mixregt-
MCD), withMCD trimmingmethod; (6), the trimmedmixture regressionmethod based on t-distribution (Mixregt-SD), with
SD trimmingmethod; (7), the proposed robust EMmixture regressionmethod based on the Laplace-distribution (MixregL);
(8), the trimmedmixture regressionmethod based on the Laplace-distribution (MixregL-MCD),withMCD trimmingmethod,
and (9), the trimmed mixture regression method based on the Laplace-distribution (MixregL-SD), with the SD trimming
method. In all simulation studies, the iteration is terminated when the change in the likelihood function is less than 10−6.

The simulation results are present in Tables 1 and 2. From the simulation studies, we can see that if the true distribution
of ε is normal, the MSEs of MLE procedure are slightly larger than our proposed method for the first regression component
when the sample size is 100, but the superiority of MLE over all other methods becomes clear when the sample size gets
larger. For other caseswhen the distribution of ε has a heavier tail, contaminated by some outliers, or there are high leverage
outliers in the data set, MLE fails to provide reasonable estimates.

The performance of TLE and Bisquare is satisfying when ε has a lighter tail. See the simulation results for all cases except
Case III, where ε has a t-distribution with 1 degree of freedom. The overall performance of the Mixregt proposed by Wei
(2012) is also satisfying when the sample size gets larger except for Case VI when high leverage points are present in the
data set, but this disadvantage is remedied by the modified procedure Mixregt-MCD.
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Table 1
MSE (bias) of point estimates for n = 100.

MLE TLE Bisquare Mixregt Mixregt-MCD MixregL MixregL-MCD

Case I: ε ∼ N(0, 1)

β10 0.130(0.011) 0.139(0.033) 0.143(0.011) 0.124(0.021) 0.163(0.029) 0.093(0.079) 0.090(0.069)
β11 0.160(−0.025) 0.212(−0.195) 0.157(−0.022) 0.130(−0.032) 0.175(−0.115) 0.094(−0.015) 0.113(−0.103)
β12 0.135(−0.034) 0.248(−0.195) 0.171(−0.048) 0.123(−0.004) 0.247(−0.031) 0.088(0.008) 0.165(−0.039)
β20 0.018(−0.003) 0.038(−0.004) 0.021(−0.001) 0.022(−0.012) 0.022(0.008) 0.028(−0.026) 0.027(−0.001)
β21 0.021(−0.016) 0.030(0.011) 0.023(−0.017) 0.021(−0.006) 0.029(−0.011) 0.027(−0.001) 0.035(−0.021)
β22 0.018(0.009) 0.024(0.034) 0.019(0.014) 0.021(−0.010) 0.030(−0.020) 0.026(−0.010) 0.042(−0.017)
π1 0.005(0.003) 0.007(0.025) 0.005(0.005) 0.005(0.013) 0.007(0.016) 0.005(0.017) 0.007(0.022)

Case II: ε ∼ Laplace(1)

β10 0.177(−0.006) 0.075(−0.007) 0.137(−0.016) 0.085(0.012) 0.123(−0.001) 0.058(0.022) 0.060(0.020)
β11 0.145(−0.040) 0.097(−0.107) 0.142(−0.054) 0.084(−0.029) 0.150(−0.033) 0.050(−0.024) 0.080(−0.033)
β12 0.152(0.009) 0.084(−0.077) 0.126(0.000) 0.080(−0.021) 0.150(−0.026) 0.055(−0.006) 0.063(−0.020)
β20 0.016(−0.002) 0.013(0.004) 0.013(0.002) 0.011(−0.007) 0.016(−0.019) 0.010(−0.010) 0.015(−0.026)
β21 0.021(−0.017) 0.013(0.007) 0.014(−0.019) 0.012(−0.008) 0.018(−0.030) 0.011(−0.004) 0.019(−0.020)
β22 0.016(−0.006) 0.013(0.019) 0.013(−0.002) 0.012(−0.002) 0.020(0.009) 0.012(0.003) 0.026(0.018)
π1 0.004(−0.004) 0.004(0.019) 0.004(0.016) 0.004(0.015) 0.005(0.012) 0.003(0.013) 0.005(0.009)

Case III: ε ∼ t1

β10 242.992(−0.120) 3.200(−0.150) 1.683(−0.116) 1.708(−0.026) 0.945(−0.075) 0.163(0.061) 0.122(0.034)
β11 174.666(−1.568) 1.886(−0.170) 1.571(−0.347) 1.990(−0.252) 1.621(−0.535) 0.521(−0.377) 0.561(−0.430)
β12 148.108(−1.770) 1.797(−0.033) 1.642(−0.306) 2.410(−0.447) 1.538(−0.360) 0.548(−0.412) 0.418(−0.405)
β20 244.822(0.172) 1.526(0.065) 0.910(0.024) 0.113(−0.020) 3.237(−0.173) 0.032(−0.024) 0.025(−0.038)
β21 175.583(−1.080) 0.774(−0.129) 0.489(−0.088) 0.079(−0.041) 0.949(−0.102) 0.032(0.052) 0.047(0.081)
β22 142.861(−0.454) 0.773(−0.065) 0.580(−0.116) 0.112(−0.049) 0.968(−0.028) 0.037(0.052) 0.048(0.054)
π1 0.084(0.213) 0.039(0.060) 0.047(0.105) 0.023(0.093) 0.028(0.108) 0.022(0.070) 0.023(0.083)

Case IV: ε ∼ t3

β10 1.568(−0.129) 0.238(0.007) 0.460(0.006) 0.529(0.031) 0.475(0.126) 0.131(0.065) 0.130(0.108)
β11 0.997(−0.234) 0.264(−0.135) 0.341(−0.041) 0.361(0.010) 0.772(−0.109) 0.176(−0.021) 0.183(−0.041)
β12 1.240(−0.024) 0.239(−0.096) 0.375(−0.058) 0.394(−0.010) 0.804(−0.040) 0.132(0.013) 0.186(−0.046)
β20 0.723(−0.029) 0.038(−0.008) 0.063(0.013) 0.034(0.002) 0.077(−0.018) 0.032(−0.005) 0.030(−0.009)
β21 0.188(0.028) 0.034(0.010) 0.085(−0.034) 0.037(−0.005) 0.062(−0.014) 0.042(0.004) 0.052(−0.018)
β22 0.115(0.031) 0.026(0.010) 0.041(−0.013) 0.029(−0.018) 0.166(−0.027) 0.035(−0.015) 0.048(0.003)
π1 0.028(0.025) 0.007(0.037) 0.009(0.030) 0.006(0.011) 0.014(0.035) 0.007(0.012) 0.007(0.021)

Case V: ε ∼ 0.95N(0, 1) + 0.05N(0, 25)

β10 2.243(−0.020) 0.124(0.046) 0.202(0.042) 0.152(0.015) 0.350(0.037) 0.097(0.034) 0.098(0.042)
β11 1.366(0.054) 0.282(−0.209) 0.225(−0.037) 0.153(−0.029) 0.528(−0.106) 0.100(−0.008) 0.160(−0.056)
β12 2.117(−0.113) 0.221(−0.190) 0.217(−0.056) 0.163(−0.050) 0.705(0.094) 0.099(−0.030) 0.175(0.023)
β20 1.767(0.159) 0.030(0.013) 0.021(0.011) 0.026(0.020) 0.028(−0.004) 0.029(0.008) 0.035(−0.003)
β21 1.277(−0.122) 0.034(0.001) 0.028(−0.023) 0.022(−0.009) 0.035(0.010) 0.026(−0.005) 0.040(0.008)
β22 0.284(0.006) 0.027(0.011) 0.029(−0.009) 0.120(−0.036) 0.038(−0.017) 0.027(−0.006) 0.044(−0.020)
π1 0.040(0.015) 0.010(0.034) 0.008(0.020) 0.007(0.015) 0.009(0.012) 0.005(0.006) 0.009(0.013)

Case VI: ε ∼ N(0, 1) with 5% high leverage outliers

β10 18.364(−2.878) 0.173(0.002) 0.152(0.015) 2.456(0.169) 0.175(−0.032) 0.036(0.080) 0.111(0.092)
β11 5.876(1.422) 0.248(−0.209) 0.200(−0.068) 3.444(1.473) 0.219(−0.055) 0.056(−0.037) 0.133(−0.012)
β12 6.520(1.641) 0.219(−0.168) 0.227(−0.091) 3.589(1.517) 0.262(0.006) 0.042(−0.014) 0.153(−0.046)
β20 11.938(2.451) 0.036(−0.002) 0.023(−0.011) 0.023(0.002) 0.027(0.019) 0.015(−0.058) 0.032(0.011)
β21 12.578(3.316) 0.028(0.000) 0.025(−0.014) 0.053(0.139) 0.027(0.010) 0.013(0.033) 0.042(0.000)
β22 12.561(3.315) 0.022(0.025) 0.020(0.019) 0.053(0.136) 0.023(−0.017) 0.012(0.021) 0.046(0.004)
π1 0.113(0.165) 0.007(0.017) 0.007(0.003) 0.007(−0.074) 0.006(0.005) 0.005(0.030) 0.006(0.011)

The simulation results clearly show that the proposed method in the paper outperforms or is at least comparable to
any other methods. It is rather unexpected that our proposed method performs better than the Mixregt and Mixregt-MCD
procedures even when ε has a t-distribution. The larger MSEs in the latter two procedures might have resulted from the
extra step involved in the algorithm, the selection of v, the degrees of freedom of the t-distribution.

The MCD estimator is used in Mixregt-MCD andMixregL-MCD to remove high leverage outliers. In the simulation study,
the SD estimator is also used to remove high leverage outliers. The simulation results are similar to those fromMixregt-MCD
and MixregL-MCD, hence are omitted here for the sake of brevity.

A common criticism about the EM algorithm is its slow convergence. This can also be seen from our simulation study.
The average numbers of iterations to achieve convergence using the MixregL procedure are 96, 97, 78, 98, 102, 10 for Case
I to Case VI, respectively, when the sample size is 100; and 124, 111, 41, 123, 119, 17 when the sample size is 400. The
number of iterations not only depends on the choice of the stopping rule, but also depends on different specifications of the
EM algorithm, such as the selection of initial values or other parameters for the latent distribution being placed.
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Table 2
MSE (bias) of point estimates for n = 400.

MLE TLE Bisquare Mixregt Mixregt-MCD MixregL MixregL-MCD

Case I: ε ∼ N(0, 1)

β10 0.018(−0.006) 0.041(0.012) 0.020(−0.005) 0.019(0.004) 0.027(0.008) 0.025(0.018) 0.031(0.014)
β11 0.020(0.002) 0.108(−0.178) 0.021(−0.001) 0.018(−0.014) 0.028(−0.014) 0.024(−0.028) 0.034(−0.029)
β12 0.018(−0.006) 0.096(−0.171) 0.020(0.000) 0.016(0.008) 0.031(0.012) 0.029(−0.001) 0.042(−0.012)
β20 0.004(0.003) 0.009(0.002) 0.004(0.002) 0.005(−0.006) 0.005(0.012) 0.008(−0.010) 0.008(0.014)
β21 0.004(0.004) 0.007(0.020) 0.004(0.002) 0.004(−0.009) 0.006(−0.002) 0.006(−0.005) 0.009(0.002)
β22 0.004(−0.005) 0.006(0.013) 0.004(−0.006) 0.005(−0.004) 0.006(0.000) 0.007(0.003) 0.008(0.009)
π1 0.001(0.000) 0.002(−0.001) 0.001(0.002) 0.001(0.001) 0.002(0.005) 0.001(0.000) 0.002(0.006)

Case II: ε ∼ Laplace(1)

β10 0.022(−0.005) 0.012(0.012) 0.015(−0.003) 0.012(−0.004) 0.013(0.003) 0.010(0.007) 0.012(0.010)
β11 0.014(0.008) 0.013(−0.041) 0.010(0.005) 0.012(0.003) 0.018(−0.013) 0.011(0.005) 0.017(−0.007)
β12 0.016(−0.006) 0.017(−0.050) 0.012(−0.004) 0.011(−0.013) 0.016(0.000) 0.008(−0.007) 0.014(0.005)
β20 0.004(−0.003) 0.003(−0.003) 0.003(−0.003) 0.002(0.001) 0.002(0.000) 0.002(0.002) 0.002(−0.001)
β21 0.004(−0.013) 0.003(0.005) 0.003(−0.015) 0.003(−0.009) 0.004(−0.003) 0.003(−0.004) 0.004(−0.001)
β22 0.004(−0.011) 0.004(0.012) 0.003(−0.009) 0.003(−0.003) 0.004(−0.006) 0.002(−0.003) 0.003(−0.003)
π1 0.001(0.002) 0.001(0.016) 0.001(0.022) 0.001(0.004) 0.001(0.006) 0.001(0.001) 0.001(0.004)

Case III: ε ∼ t1

β10 313.757(−0.917) 0.735(−0.040) 0.631(−0.083) 0.147(0.019) 0.154(0.002) 0.016(0.073) 0.017(0.076)
β11 278.219(−3.135) 0.398(0.097) 0.607(−0.187) 0.458(−0.191) 0.485(−0.257) 0.194(−0.352) 0.322(−0.454)
β12 455.172(−1.369) 0.399(0.059) 0.716(−0.146) 0.351(−0.177) 0.484(−0.200) 0.197(−0.361) 0.351(−0.462)
β20 313.757(−0.917) 0.021(−0.001) 0.514(−0.052) 0.023(−0.008) 0.021(−0.002) 0.008(−0.061) 0.008(−0.067)
β21 269.680(−1.135) 0.032(0.003) 0.047(0.034) 0.014(0.006) 0.022(−0.003) 0.011(0.092) 0.015(0.099)
β22 453.695(0.630) 0.093(−0.009) 0.083(0.014) 0.017(0.009) 0.020(−0.002) 0.012(0.094) 0.016(0.102)
π1 0.061(0.247) 0.008(0.003) 0.016(0.062) 0.009(0.031) 0.008(0.037) 0.037(0.160) 0.038(0.161)

Case IV: ε ∼ t3

β10 0.301(0.020) 0.037(−0.008) 0.038(−0.010) 0.039(−0.014) 0.059(−0.016) 0.033(0.002) 0.044(0.005)
β11 0.210(−0.046) 0.039(−0.070) 0.044(0.049) 0.034(−0.013) 0.071(−0.008) 0.028(−0.019) 0.049(−0.033)
β12 0.227(−0.049) 0.037(−0.081) 0.034(0.021) 0.046(0.000) 0.045(0.009) 0.031(0.008) 0.048(−0.043)
β20 0.066(0.018) 0.008(−0.017) 0.007(−0.007) 0.006(−0.007) 0.006(0.011) 0.008(−0.011) 0.006(0.008)
β21 0.069(0.055) 0.007(0.001) 0.006(−0.025) 0.007(−0.005) 0.009(−0.008) 0.007(0.003) 0.010(0.005)
β22 0.069(0.055) 0.009(0.006) 0.008(−0.025) 0.008(0.009) 0.010(−0.001) 0.008(0.011) 0.012(0.003)
π1 0.010(−0.017) 0.002(0.023) 0.002(0.023) 0.002(0.004) 0.003(0.007) 0.002(−0.001) 0.003(0.003)

Case V: ε ∼ 0.95N(0, 1) + 0.05N(0, 25)

β10 0.098(0.000) 0.041(0.005) 0.024(0.004) 0.029(−0.007) 0.038(0.015) 0.034(0.009) 0.042(0.028)
β11 0.394(0.028) 0.048(−0.095) 0.021(0.027) 0.022(0.011) 0.044(−0.012) 0.025(0.003) 0.040(−0.012)
β12 0.081(−0.050) 0.051(−0.119) 0.022(0.014) 0.026(0.001) 0.045(0.012) 0.032(0.000) 0.048(−0.001)
β20 0.041(0.015) 0.006(0.003) 0.005(0.002) 0.006(−0.002) 0.006(0.006) 0.008(−0.006) 0.008(0.003)
β21 0.088(0.046) 0.006(0.010) 0.005(−0.008) 0.006(0.006) 0.009(0.004) 0.008(0.009) 0.011(0.009)
β22 0.135(0.041) 0.007(0.024) 0.004(0.000) 0.005(0.002) 0.008(0.000) 0.007(0.008) 0.011(0.007)
π1 0.007(−0.033) 0.001(0.003) 0.001(0.006) 0.001(0.000) 0.002(−0.002) 0.002(−0.003) 0.002(−0.007)

Case VI: ε ∼ N(0, 1) with 5% high leverage outliers

β10 9.355(−1.688) 0.033(0.010) 0.020(−0.010) 1.375(0.246) 0.021(−0.014) 0.013(0.065) 0.029(0.002)
β11 5.188(1.667) 0.049(−0.102) 0.023(−0.011) 2.505(1.479) 0.027(−0.002) 0.014(−0.049) 0.033(−0.037)
β12 4.187(1.307) 0.039(−0.098) 0.021(−0.007) 2.594(1.507) 0.029(0.007) 0.017(−0.034) 0.031(−0.015)
β20 11.697(2.305) 0.005(0.002) 0.004(0.003) 0.005(0.005) 0.005(0.004) 0.007(−0.047) 0.007(−0.002)
β21 11.586(3.309) 0.006(0.011) 0.005(0.012) 0.021(0.125) 0.006(0.004) 0.004(0.026) 0.009(0.005)
β22 12.442(3.437) 0.006(0.003) 0.005(0.003) 0.020(0.122) 0.006(−0.005) 0.005(0.028) 0.010(0.000)
π1 0.140(0.204) 0.002(0.004) 0.001(−0.006) 0.008 (−0.089) 0.001(0.005) 0.004(0.020) 0.001(0.002)

3.2. Sensitivity study based on a real data

In this section, we describe a sensitivity study based on a real data set to compare how outliers affect various different
estimation procedures. A typical real data set suitable for mixture regression modeling is the tone data collected in a tone
perception experiment of Cohen (1984). In the experiment, a pure fundamental tone was played to a trained musician and
electronically generated overtones were added, determined by a stretching ratio (stretchratio). A value of 2 for the stretch
ratio corresponds to the harmonic pattern usually heard in traditional definite pitched instruments. Themusicianwas asked
to tune an adjustable tone to the octave above the fundamental tone, and a measurement called ‘‘tuned’’ gives the ratio of
the adjusted tone to the fundamental. 150 pairs of (tuned, stretchratio) values are obtained for the same musician. The
variable ‘‘strechratio’’ is treated as a response variable and ‘‘tuned’’ as a predictor. The setup of the experiment indicates two
mixture components in the model, and the scatter plot of the data collected from the experiment confirms this point. To see
the impact of different types of outliers on various procedures, we first add 5 identical pairs, (3, 4), to the original data set
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Fig. 1. Mixture linear fitting with outlier (3, 4). Left panel: solid line—Bisquare, dashed line—MixregL, dotted line—Mixregt, Right panel: solid line—
Bisquare, dashed—TLE, dotted line—MLE.

Fig. 2. Mixture linear fitting with outlier (3, 4.5). Left panel: solid line—Bisquare, dashed line—MixregL, dotted line—Mixregt, Right panel: solid line—
Bisquare, dashed—TLE, dotted line—MLE.

as outliers in the y-direction. The circles in all plots denote the original data points, and the star denotes the outliers. The
right-hand plots in all the figures below have the same y-scales as in the left-hand plots.

The left-hand plot in Fig. 1 clearly shows that the fitting by MixregL and Bisquare are almost identical, and Mixregt also
provides a very good fit. For comparison, The Bisquare fit is also drawn in the right-hand plot in Fig. 1, it is quite obvious
that the TLE and MLE are affected severely by the outliers. 43 iterations are used for MixregL in this set up to achieve the
convergence.

We increase the y-value of the outliers from 4 to 4.5, and the fitting results as seen in Fig. 2 clearly show that the per-
formance of Bisquare, MixregL and Mixregt procedures are quite stable, while the TLE and MLE procedure fits are dragged
more severely towards the outliers. For this case, 43 iterations are used for MixregL to achieve convergence.

Then we add 10 identical pairs, (0, 3), to the original data set as high leverage outliers. The left-hand plot in Fig. 3 shows
that both Bisquare and MixregL give a reasonable fit, but surprisingly the Mixregt performs less satisfactorily, implying that
Mixregt is not quite robust to x-outliers. From the right-hand plot in Fig. 3, we see thatMLE has inferior performance against
the outliers, and TLE works better. Here, 77 iterations are needed to get convergence for the MixregL procedure.

Finally 10 identical pairs (0, 4)were added to the original data set as both outliers in x and y-direction. The left-hand plot
in Fig. 4 shows that Bisquare continues to provide a robust fit, MixregL barely keeps a vague two-line structure, andMixregt
is affected severely by the outliers. The right-hand plot in Fig. 4 shows that MLE is still the worst, and TLE works fine. 22
iterations were used for MixregL to achieve convergence.

In all the scenarios, the Bisquare performed uniformly better than other fitting procedures, although the simulation stud-
ies show that Bisquare is less satisfying in some cases, such as in ε ∼ t-distributions. Instead of modifying the log likelihood
objective function, the Bisquare procedure tries to modify the existing EM algorithm for mixture regression models by re-
placing the least squares criterion with a robust criteria in the M step. See Bai et al. (2012) for detail. Generally MixregL
performed better than Mixregt, but both procedures are not quite robust to the high leverage outliers. We also applied
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Fig. 3. Mixture linear fitting with outlier (0, 3). Left panel: solid line—Bisquare, dashed line—MixregL, dotted line—Mixregt, Right panel: solid line—
Bisquare, dashed—TLE, dotted line—MLE.

Fig. 4. Mixture linear fitting with outlier (0, 4). Left panel: solid line—Bisquare, dashed line—MixregL, dotted line—Mixregt, Right panel: solid line—
Bisquare, dashed—TLE, dotted line—MLE.

Mixregt-MCD and MixregL-MCD to the data set. Both procedures can successfully remove the high leverage outliers and
give similar results to the Bisquare.

4. Conclusion

A new robust estimation procedure tailored to mixture linear regression models is proposed by assuming the random
error has a Laplace distribution. The robustness is achieved essentially by the LAD procedure, and is implemented with an
EM algorithm. Efficiency and effectiveness of the proposed EM algorithm relies upon the fact that the Laplace distribution
is a scale mixture of a normal distribution and a distribution related to exponential. The simulation study shows that the
proposed method is superior to or comparable to existing robust estimation procedures in all simulation setups. However,
the real data example shows that when high leverage outliers exist, the trimmed version of the proposed procedure should
be used.
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